Abstract

Average dwell time (ADT) properties characterize the rate at which a hybrid system performs mode switches. In this article, we present a set of techniques for verifying ADT properties. The stability of a hybrid system A can be verified by combining these techniques with standard methods for checking stability of the individual modes of A. We introduce a new type of simulation relation for hybrid automata— switching simulation —for establishing that a given automaton A switches more rapidly than another automaton B. We show that the question of whether a given hybrid automaton has ADT τ a can be answered either by checking an invariant or by solving an optimization problem. For classes of hybrid automata for which invariants can be checked automatically, the invariant-based method yields an automatic method for verifying ADT; for automata that are outside this class, the invariant has to be checked using inductive techniques. The optimization-based method is automatic and is applicable to a restricted class of initialized hybrid automata. A solution of the optimization problem either gives a counterexample execution that violates the ADT property, or it confirms that the automaton indeed satisfies the property. The optimization and the invariant-based methods can be used in combination to find the unknown ADT of a given hybrid automaton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.