Abstract
Concurrent garbage collection algorithms are a challenge for program verification. In this paper, we address this problem by proposing a mechanized proof methodology based on the Rely-Guarantee proof technique. We design a compiler intermediate representation with strong type guarantees, dedicated support for abstract concurrent data structures, and high-level iterators on runtime internals. In addition, we define an Rely-Guarantee program logic supporting an incremental proof methodology where annotations and invariants can be progressively enriched. We formalize the intermediate representation, the proof system, and prove the soundness of the methodology in the Coq proof assistant. Equipped with this, we prove a fully concurrent garbage collector where mutators never have to wait for the collector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.