Abstract
How to quickly identify poisonous mushrooms is a worldwide problem, because poisonous mushrooms and edible mushrooms have very similar appearances. Even some edible mushrooms must be processed further before they can be eaten. In addition, mushrooms from different geographical origins contain different levels of heavy metals. Eating frequent mushrooms with excessive heavy metal content can also cause food poisoning. This information is very important and needs to be informed to consumers in advance. Through the demand for the safety of porcini mushrooms in the Yunnan area we propose a hierarchical identification system based on Fourier-transform near-infrared (FT-NIR) spectroscopy to evaluate the edible safety of porcini species. We found that deep learning is the most effective means to identify the edible safety of porcini, and the recognition accuracy was 100%, by comparing two pattern recognition tools, deep learning and partial least square discriminant analysis (PLS-DA). Although the accuracy of the PLS-DA test set is 96.10%, the poisonous porcini is not allowed to be wrongly judged. In addition, the cadmium (Cd) content of Leccinum rugosiceps in the Midu area exceeded the standard. Deep learning can trace Le. rugosiceps geographic origin with an accuracy of 100%. The overall results show that deep learning methods based on FT-NIR can identify porcini that is at risk of being eaten. This has useful application prospects in food safety. © 2021 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.