Abstract

Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call