Abstract
In previous work we developed and implemented a sub-grid model for the efficient simulation of heat transfer in gas-particle flows around immersed horizontal cylinders. In this study we apply verification, validation, and uncertainty quantification methods to the developed model to rigorously examine its capabilities and limitations. Numerical verification with small, unit-cell problems shows excellent transient and steady-state behavior. Validation of a bubbling bed and a turbulent bed showed good agreement with high-resolution simulations. To quantify the error of the constitutive model predictions two methods were used to calculate confidence intervals, showing an error of approximately ±20%, well within the range of typical Nusselt number approximations. The sub-grid model was applied to a conceptual pilot-scale 1 MWe carbon capture reactor to compare with alternative modeling methods. Results show fair predictions of hydrodynamics, heat transfer, and carbon capture rates with significant savings in computational runtimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.