Abstract

The design of modern systems has reached a complexity which makes it inevitable to apply verification methods in order to guarantee its correct and safe execution. The verification methods frequently produce proof obligations that can not be solved any more due to the huge search space. However, by setting enough variables to fixed values, the search space is obviously reduced and solving engines eventually may be able to complete the verification task. Although this results in a partial verification, the results may still be valuable --- in particular as opposed to the alternative of no verification at all. However, so far no systematic investigation has been conducted on which variables to fix in order to reduce verification runtime as much as possible while, at the same time, still getting most coverage. This paper addresses this question by proposing a corresponding verification runtime analysis. Experimental evaluations confirm the potential of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.