Abstract

Despite proliferation of the use of air pollution models for regulatory application, major discrepancies still occur between models and also between models and observations, especially when oversimplistic models are used. The problem of predicting plume rise (and subsequently ground level concentrations) from a single source is evaluated here in terms of an integral plume rise and dispersion model (USPR) which encompasses both bouyant rise and turbulent spreading; thus avoiding the problems of the concatenation of separate plume rise and dispersion models. The wide range of validity of the USPR model is demonstrated is terms of plume rise by comparison with the highly buoyant GCOS and Kincaid plumes as well as with dense effluents. It is also shown to be in agreement with Briggs' two-thirds law when the restrictions applicable to the latter model are imposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.