Abstract

We proved by computer enumeration that the Jones polynomial distinguishes the unknot for knots up to 22 crossings. Following an approach of Yamada, we generated knot diagrams by inserting algebraic tangles into Conway polyhedra, computed their Jones polynomials by a divide-and-conquer method, and tested those with trivial Jones polynomials for unknottedness with the computer program SnapPy. We employed numerous novel strategies for reducing the computation time per knot diagram and the number of knot diagrams to be considered. That made computations up to 21 crossings possible on a single processor desktop computer. We explain these strategies in this paper. We also provide total numbers of algebraic tangles up to 18 crossings and of Conway polyhedra up to 22 vertices. We encountered new unknot diagrams with no crossing-reducing pass moves in our search. We report one such diagram in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.