Abstract
AbstractThis work presents a general methodology for verification of the completeness of first-order unification algorithms à la Robinson developed in the higher-order proof assistant PVS. The methodology is based on a previously developed formalization of the theorem of existence of most general unifiers for unifiable terms over first-order signatures. Termination and soundness proofs of any unification algorithm are proved by reusing the formalization of this theorem and completeness should be proved according to the specific way in that non unifiable inputs are treated by the algorithm.KeywordsPropositional CalculusFunction SymbolGeneral MethodologyUnification AlgorithmProof AssistantThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.