Abstract
In the evolving landscape of clinical diagnostics, the significance of folate takes center stage as precision and innovation shape advancements in analytical methodologies. Folate, a pivotal element in cellular metabolism, governs physiological processes and serves as an indicator for various medical conditions. This study employs the Chemiluminescent Microparticle Immunoassay (CMIA), known for its accuracy, to assess the reproducibility and repeatability of serum folate levels. Folate's role in cellular metabolism influences diverse physiological functions, making its precise quantification crucial for identifying and monitoring conditions such as folate deficiency. The CMIA method emerges as a robust approach, leveraging immunological specificity for high precision and reliability. Utilizing the Abbott Alinity ci® Analyzer, a technologically advanced clinical chemistry instrument, this study incorporates a systematic analytical method verification procedure. This involves quantification through a standardized protocol and a comparative analysis against criteria set by esteemed societies (RICOS and FSCB), ensuring comprehensive insights into analysis techniques. The reproducibility test, evaluating the impact of various factors on assay results, reveals low Coefficient of Variation (CV) values (CV1: 10.25%, CV2: 8.58%, CV3: 9.13%) across different levels. The results align with quality control limits, emphasizing the method's reliability. Repeatability assessment demonstrates exceptionally low CV values (CV1: 4.84%, CV2: 3.41%, CV3: 1.89%), highlighting the method's stability and precision under controlled conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.