Abstract

Purpose: The impact of system parameters on signal detectability can be studied with simulation platforms. We describe the steps taken to verify and confirm the accuracy of a local platform developed for the use in virtual clinical trials. Approach: The platform simulates specific targets into existing two-dimensional full-field digital mammography and digital breast tomosynthesis images acquired on a Siemens Inspiration system. There are three steps: (1) creation of voxel models or analytical objects; (2) generation of a realistic object template with accurate resolution, scatter, and noise properties; and (3) insertion and reconstruction. Four objects were simulated: a 0.5-mm aluminium (Al) sphere and a 0.2-mm-thick Al sheet in a PMMA stack, a 0.8-mm steel edge and a three-dimensional mass model in a structured background phantom. Simulated results were compared to acquired data. Results: Peak contrast and signal difference-to-noise ratio (SDNR) were in close agreement ( error) for both sphere and sheet. The similarity of pixel value profiles for sphere and sheet in the direction and the artifact spread function for real and simulated spheres confirmed accurate geometric modeling. Absolute and relative average deviation between modulation transfer function measured from a real and simulated edges showed accurate sharpness modelling for spatial frequencies up to the Nyquist frequency. Real and simulated objects could not be differentiated visually. Conclusions: The results indicate that this simulation framework is a strong candidate for use in virtual clinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.