Abstract

Cyclic plastic finite element modeling was carried out to investigate effect of overload on fatigue crack growth under blunting and no-blunting mechanisms at different overload ratios. The stress transfer mechanism was verified and was found more obvious in the case of crack blunting though its effect was time-limited. The level of crack closure varied periodically due to gradual relaxation of compressive residual stress during crack propagation. Both the overload plastic zone and the overload affected zone were linearly correlated with overload ratio, and an overload ratio value of 1.1 was the best choice for studying overload effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.