Abstract

In this study, we verify the performance of the simultaneous equations method using an experimental active noise control system. The simultaneous equations method is based on a priciple different from the filtered-x algorithm requiring a filter modeled on a secondary path from a loudspeaker to an error microphone. Instead of the filter, called the secondary path filter, this method uses an auxiliary filter identifying the overall path consisting of a primary path, a noise control filter and the secondary path. As inferred from the configuration of the overall path, the auxiliary filter can provide two independent equations when two different coefficient vectors are given to the noise control filter. The method thereby estimates the coefficient vector of the noise control filter minimizing the output of the error microphone. In this paper, we propose the application of a frequency domain adaptive algorithm to the identification of the overall path. An improvement in the noise reduction speed is thereby expected. In this paper, we also present computer simulation results demonstrating that the simultaneous equations method can automatically recover the noise reduction effect degraded by path changes, and finally, using an experimental system, we indicate that the method successfully works in practical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call