Abstract

We study the problem of certifying programs combining imperative and functional features within the general framework of type theory. Type theory is a powerful specification language which is naturally suited for the proof of purely functional programs. To deal with imperative programs, we propose a logical interpretation of an annotated program as a partial proof of its specification. The construction of the corresponding partial proof term is based on a static analysis of the effects of the program which excludes aliases. The missing subterms in the partial proof term are seen as proof obligations, whose actual proofs are left to the user. We show that the validity of those proof obligations implies the total correctness of the program. This work has been implemented in the Coq proof assistant. It appears as a tactic taking an annotated program as argument and generating a set of proof obligations. Several nontrivial algorithms have been certified using this tactic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.