Abstract

Abstract Bison is a computational physics code that uses the finite element method to model the thermo-mechanical response of nuclear fuel. Since Bison is used to inform high-consequence decisions, it is important that its computational results are reliable and predictive. One important step in assessing the reliability and predictive capabilities of a simulation tool is the verification process, which quantifies numerical errors in a discrete solution relative to the exact solution of the mathematical model. One step in the verification process—called code verification—ensures that the implemented numerical algorithm is a faithful representation of the underlying mathematical model, including partial differential or integral equations, initial and boundary conditions, and auxiliary relationships. In this paper, the code verification process is applied to spatiotemporal heat conduction problems in Bison. Simultaneous refinement of the discretization in space and time is employed to reveal any potential mistakes in the numerical algorithms for the interactions between the spatial and temporal components of the solution. For each verification problem, the correct spatial and temporal order of accuracy is demonstrated for both first- and second-order accurate finite elements and a variety of time-integration schemes. These results provide strong evidence that the Bison numerical algorithm for solving spatiotemporal problems reliably represents the underlying mathematical model in MOOSE. The selected test problems can also be used in other simulation tools that numerically solve for conduction or diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.