Abstract

The ladder sleeper, which is a type of longitudinal sleeper with long beams in the longitudinal direction of the rail, was developed for the maintenance-labor saving of ballast tracks. In this study, to quantify the load distribution performance of the ladder sleepers at the structural boundary, full-scale model tests were conducted to quantify the vibration transmission reduction effect of the ladder sleepers. Following that, numerical experiments were carried out using a three-dimensional numerical analysis model and it was revealed that the ladder sleeper can reduce the pressure on the sleeper bottom plane by approximately 70% when compared to conventional prestressed concrete sleepers. Furthermore, when laying the ladder sleeper at the structural boundary, it was shown that laying across the structural boundary may be more effective in reducing the pressure on the sleeper bottom plane than laying it in front of the structural boundary. Finally, ladder sleepers were installed on the commercial line and long-term measurements of the longitudinal level irregularity verified the effect of suppressing the longitudinal level irregularity of the ballasted ladder track.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.