Abstract
Linear programming (LP) models have been developed for a wide range of normative purposes in agricultural production economics. Despite their widespread application, a pervading concern among users is reliability — how well does a particular model actually describe and/or predict real world phenomena when it is so designed.Much attention has been devoted in recent years to methods for making programming models produce results more in line with those actually observed. These efforts have included development of more detail in production activities and restrictions, incorporation of flexibility constraints into recursive programming systems, specification of more realistic behavioral properties, and development of guidelines for reducing aggregation error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.