Abstract

A high-order implementation of the Discontinuous Galerkin ( dg) method is presented for solving the three-dimensional Linearized Euler Equations on an unstructured hexahedral grid. The method is based on a quadrature free implementation and the high-order accuracy is obtained by employing higher-degree polynomials as basis functions. The present implementation is up to fourth-order accurate in space. For the time discretization a four-stage Runge–Kutta scheme is used which is fourth-order accurate. Non-reflecting boundary conditions are implemented at the boundaries of the computational domain.The method is verified for the case of the convection of a 1D compact acoustic disturbance. The numerical results show that the rate of convergence of the method is of order p + 1 in the mesh size, with p the order of the basis functions. This observation is in agreement with analysis presented in the literature. To cite this article: H. Özdemir et al., C. R. Mecanique 333 (2005).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.