Abstract

During the past few years, most of the new developed numerical weather prediction models adopt the strategy of multi-scale technique. Therefore, China Meteorological Administration has devoted to developing a new generation of global and regional multi-scale model since 2003. In order to validate the performance of the GRAPES (Global and Regional Assimilation and PrEdiction System) model both for its scientific design and program coding, a suite of idealized tests has been proposed and conducted, which includes the density flow test, three-dimensional mountain wave and the cross-polar flow test. The density flow experiment indicates that the dynamic core has the ability to simulate the fine scale nonlinear flow structures and its transient features. While the three-dimensional mountain wave test shows that the model can reproduce the horizontal and vertical propagation of internal gravity waves quite well. Cross-polar flow test demonstrates the rationality of both for the semi-Lagrangian departure point calculation and the discretization of the model near the poles. The real case forecasts reveal that the model has the ability to predict the large-scale weather regimes in summer such as the subtropical high, and to capture the major synoptic patterns in the mid and high latitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.