Abstract

Sendai virus (SeV) is one of the most important pathogens in the specific-pathogen free rodents. It is known that there are some inbred mouse strains susceptible or resistant to SeV infection. The C57BL/6 (B6) and DBA/2 (D2) mice are representative of the resistant and susceptible strains, respectively. Previous study with the quantitative trait locus (QTL) analysis identified three QTLs responsible for resistance or susceptibility to SeV infection on different chromosomes and indicated that resistance or susceptibility to SeV infection was almost predicted by genotypes of these three QTLs. In this paper, to verify the above hypothesis, congenic lines were generated as follows; B6-congenic lines carrying one of the D2 alleles of three QTLs and combination of these three QTLs, and D2-congenic lines carrying single or combination of B6 alleles of three QTLs. All these congenic lines were then challenged with SeV infection. D2 congenic lines introgressed single or combination of B6 alleles of QTLs changed to resistance to SeV infection. Especially, a D2 triple-congenic line became resistant as similar level to B6-parental strain. However, B6-congenic lines introgressed single or combination of D2 alleles of QTLs all remained to be resistant to SeV infection. Both IL-6 and TNF-α in broncho-alveolar lavage fluid of D2 triple-congenic line were decreased to the similar level of B6 mice, suggesting that this is a part of factors that D2 triple-congenic line became resistant to the similar level of B6 mice. Data obtained from these congenic mice verified that three QTLs identified previously were indeed responsible for the resistance/susceptibility to SeV infection in B6 and D2 mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call