Abstract

BackgroundImproved understanding of the tumour microenvironment (TME) has enabled remarkable advancements in research on cancer progression in the past few years. It is crucial to understand the nature and function of the TME because precise treatment strategies, including immunotherapy, for managing specific cancers have received widespread attention. The immune infiltrative profiles of neuroblastoma (NB) have not yet been completely illustrated. The purpose of this research was to analyse tumour immune cell infiltration (ICI) in the microenvironment of NB.MethodsWe applied the CIBERSORT and ESTIMATE algorithms to evaluate the ICI status of 438 NB samples. Three ICI models were selected, and ICI scores were acquired. Subgroups with high ICI scores determined based on the presence of immune activation signalling pathways had better overall survival.ResultsGenes involved in the immunosuppressive heparan sulphate glycosaminoglycan biosynthesis signalling pathway were markedly enriched in the low ICI score subgroup. It was inferred that patients with high ICI NB subtypes were more likely to respond to immunotherapy and have a better prognosis than those of patients with low ICI NB subtypes.ConclusionNotably, our ICI data not only provide a new clinical and theoretical basis for mining NB prognostic markers related to the microenvironment but also offer new ideas for the development of NB precision immunotherapy methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call