Abstract
Model checking is a formal method that has proven useful for verifying e.g. logic designs of safety systems used in nuclear plants. However, redundant subsystems are implemented in nuclear plants in order to achieve a certain level of fault-tolerance. A formal system-level analysis that takes into account both the detailed logic design of the systems and the potential failures of the hardware equipment is a difficult challenge. In this work, we have created new methodology for modelling hardware failures, and used it to enable the verification of the fault-tolerance of the plant using model checking. We have used an example probabilistic risk assessment (PRA) model of a fictional nuclear power plant as reference and created a corresponding model checking model that covers several safety systems of the plant. Using the plant-level model we verified several safety properties of the nuclear plant. We also analysed the fault-tolerance of the plant with regard to these properties, and used abstraction techniques to manage the large plant-level model. Our work is a step towards being able to exhaustively verify properties on a single model that covers the entire plant. The developed methodology follows closely the notations of PRA analysis, and serves as a basis for further integration between the two approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.