Abstract
Model checking has been successfully used for detailed formal verification of instrumentation and control (I&C) systems, as long as the focus has been on the application logic, alone. In safety-critical applications, fault tolerance is also an important aspect, but introducing I&C hardware failure modes to the formal models comes at a significant computational cost. Previous attempts have led to state space explosion, and prohibitively long processing times. In this paper, we present a method for adding hardware component failures and communication delays into I&C application logic models for the NuSMV symbolic model checker. Based on a case study built around a semi-fictitious, four-redundant nuclear power plant protection system, we demonstrate how even detailed system designs can be verified, if the focus is kept on single failure tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.