Abstract

Dynamic Relaxation (DR) method is presented for the analysis of geometrically linear laterally loaded, rectangular laminated plates. The analysis uses the Mindlin plate theory which accounts for transverse shear deformations. A computer program has been compiled. The convergence and accuracy of the DR solutions of isotropic, orthotropic, and laminated plates for elastic small deflection response are established by comparison with different exact and approximate solutions. The present Dynamic Relaxation (DR) method shows a good agreement with other analytical and numerical methods used in the verification scheme. It was found that: The convergence and accuracy of the DR solution is dependent on several factors which include boundary conditions, mesh size and type, fictitious densities, damping coefficients, time increment and applied load. Also, the DR small deflection program using uniform meshes can be employed in the analysis of different thicknesses for isotropic, orthotropic or laminated plates under uniform loads in a fairly good accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.