Abstract

In this paper, we provide an automata-based framework for verifying diagnosability property of Cyber-Physical Systems leveraging a notion of so-called hybrid barrier certificates. Concretely, we first construct a so-called (δ,K)-deterministic finite automata ((δ,K)-DFA) associated with the desired diagnosability property, which captures the occurrence of the fault to be diagnosed. Having a (δ,K)-DFA, we show that the verification of diagnosability properties is equivalent to a safety verification problem over a product system between this DFA and the dynamical system of interest. We further show that such a verification problem can be solved via computing hybrid barrier certificates for the product system. To compute the hybrid barrier certificates, we provide a systematic technique leveraging a counter-example guided inductive synthesis framework. Finally, we showcase the effectiveness of our results through a case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.