Abstract

Density functional theory (DFT) and Fourth-order Möller-Plesset (MP4) perturbation theory calculations are performed to examine the possibility of hydrogen storage in V-capped VC(3)H(3) complex. Stability of bare and H(2) molecules adsorbed V-capped VC(3)H(3) complex is verified using DFT and MP4 method. Thermo-chemistry calculations are carried out to estimate the Gibbs free corrected averaged H(2) adsorption energy which reveals whether H(2) adsorption on V-capped VC(3)H(3) complex is energetically favorable, at different temperatures. We use different exchange and correlation functionals employed in DFT to see their effect on H(2) adsorption energy. Molecular dynamic (MD) simulations are performed to confirm whether this complex adsorbs H(2) molecules at a finite temperature. We elucidate the correlation between H(2) adsorption energy obtained from density functional calculations and retaining number of H(2) molecules on VC(3)H(3) complex during MDs simulations at various temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.