Abstract
Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a general, rigorous, and simple-to-apply methodology is presented for both the verification of the correct implementation of the model equations (code verification) and numerical error quantification (solution verification). The proposed code verification procedure consists in using the method of manufactured solutions and executing an order-of-accuracy test, assessing the rate of convergence of the numerical solution to the manufactured one. For the solution verification, the numerical error is quantified by applying the Richardson extrapolation, which provides an approximation of the analytical solution, and by using the grid convergence index to estimate the numerical uncertainty affecting the simulation results. The methodology is applied to verify the correct implementation of the drift-reduced Braginskii equations into the GBS code, and to estimate the numerical error affecting the GBS solutions. The GBS code is successfully verified, and an estimate of the numerical error affecting the simulation results is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.