Abstract

We formalize the problem of program verification as a learning problem, showing that invariants in program verification can be regarded as geometric concepts in machine learning. Safety properties define bad states: states a program should not reach. Program verification explains why a program’s set of reachable states is disjoint from the set of bad states. In Hoare Logic, these explanations are predicates that form inductive assertions. Using samples for reachable and bad states and by applying well known machine learning algorithms for classification, we are able to generate inductive assertions. By relaxing the search for an exact proof to classifiers, we obtain complexity theoretic improvements. Further, we extend the learning algorithm to obtain a sound procedure that can generate proofs containing invariants that are arbitrary boolean combinations of polynomial inequalities. We have evaluated our approach on a number of challenging benchmarks and the results are promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.