Abstract

Abstract Thermal molten salt reactors can be designed in many configurations. This paper investigates the optimal geometry of a one fluid molten salt reactor (OFMSR) in a virtual one-and-half fluid configuration with a fixed fuel salt volume. Two primary configurations were studied, axial blanket (three models) and radial blanket (two models). Neutronic calculations were performed using MCNP6.2 and Serpent-2 reactor physics codes with ENDF/B-VII.0 continuous neutron library. The analysis comprises criticality calculation, temperature coefficient of reactivity (TCR), breeding ratio (BR), and kinetic parameters. The results imply a good agreement between MCNP and Serpent calculations. TCR values show a different pattern between axial and radial blanket configuration. Whilst the correlation between TCR and BR is inversely correlated in axial blanket, it is linear in radial blanket configuration. Overall, radial blanket configuration seemed to show better neutronic performance than axial blanket configuration, with comparably strong negative TCR and large BR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.