Abstract

Decay heat is an important design parameter at the future Swedish spent nuclear fuel repository. It will be calculated for each fuel assembly using dedicated depletion codes, based on the operator-declared irradiation history. However, experimental verification of the calculated decay heat is also anticipated. Such verification may be obtained by gamma scanning using the established correlation between the decay heat and the emitted gamma-ray intensity from 137Cs. In this procedure, the correctness of the operator-declared fuel parameters can be verified.Recent achievements of the gamma-scanning technique include the development of a dedicated spectroscopic data-acquisition system and the use of an advanced calorimeter for calibration. Using this system, the operator-declared burnup and cooling time of 31 pressurized water reactor fuel assemblies was verified experimentally to within 2.2% (1σ) and 1.9% (1σ), respectively. The measured decay heat agreed with calorimetric data within 2.3% (1σ), whereby the calculated decay heat was verified within 2.3% (1σ). The measuring time per fuel assembly was ˜15 min.In case reliable operator-declared data are not available, the gamma-scanning technique also provides a means to independently measure the decay heat. The results obtained in this procedure agreed with calorimetric data within 2.7% (1σ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.