Abstract

In this paper we utilize 7 years of SeaWiFS satellite data to obtain seasonal and interannual time histories of the major water color-producing agents (CPAs), phytoplankton chlorophyll (chl), dissolved organic carbon (doc), and suspended minerals (sm) for Lake Michigan. We first present validation of the Great Lakes specific algorithm followed by correlations of the CPAs with coincident environmental observations. Special attention is paid to the satellite observations of the extensive episodic event of sediment resuspension and calcium carbonate precipitation out of the water. We then compare the obtained time history of the CPA's spatial and temporal distributions throughout the lake to environmental observations such as air and water temperature, wind speed and direction, significant wave height, atmospheric precipitation, river runoff, and cloud and lake ice cover. Variability of the onset, duration, and spatial extent of both episodic events and seasonal phenomena are documented from the SeaWiFS time series data, and high correlations with relevant environmental driving factors are established. The relationships between the CPAs retrieved from satellite data and environmental observations are then used to speculate on the future of Lake Michigan under a set of climate change scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.