Abstract

This paper deals with advanced techniques of transducing kinetic energy of vibration into useful electricity. Piezoelectricity is widely used as one of the conversion principles and nonlinearities are studied. Motivated by possible applications in aircraft or railways, we seek to find the best system configuration for various forcing conditions to maximize the power generation for more advanced wireless sensing stations. The results for vibration amplitude 0.5 g indicate that monostable regime is suitable for tuning for frequencies lower than the natural frequency of the linear resonator. The best type of oscillation for bistable regime is always in-well single-periodic behavior and is suitable for tuning in the entire frequency range from 20 to 65 Hz. The results show the versatility of this simple energy harvester and could serve as theoretical background for a new tunable energy harvester that will be able to adapt to changes in excitation. This design could also be used in smart sensing structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.