Abstract

According to international standards, clinical laboratories are required to verify the performance of assays prior to their implementation in routine practice. This typically involves the assessment of the assay's imprecision and trueness vs. appropriate targets. The analysis of these data is typically performed using frequentist statistical methods and often requires the use of closed source, proprietary software. The motivation for this paper was therefore to develop an open-source, freely available software capable of performing Bayesian analysis of verification data. The veRification application presented here was developed with the freely available R statistical computing environment, using the Shiny application framework. The codebase is fully open-source and is available as an R package on GitHub. The developed application allows the user to analyze imprecision, trueness against external quality assurance, trueness against reference material, method comparison, and diagnostic performance data within a fully Bayesian framework (with frequentist methods also being available for some analyses). Bayesian methods can have a steep learning curve and thus the work presented here aims to make Bayesian analyses of clinical laboratory data more accessible. Moreover, the development of the application and seeks to encourage the dissemination of open-source software within the community and provides a framework through which Shiny applications can be developed, shared, and iterated upon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call