Abstract

In a conventional quantum (k, n) threshold scheme, a trusted party shares a quantum secret with n agents such that any k or more agents can cooperate to recover the original secret, while fewer than k agents obtain no information about the secret. Is the reconstructed quantum secret same with the original one? Or is the dishonest agent willing to provide a true share during the secret reconstruction? In this paper we reexamine the security of quantum (k, n) threshold schemes and show how to construct a verifiable quantum (k, n) threshold scheme by combining a qubit authentication process. The novelty of ours is that it can provide a mechanism for checking whether the reconstructed quantum secret is same with the original one. This mechanism can also attain the goal of checking whether the dishonest agent provides a false quantum share during the secret reconstruction such that the secret quantum state cannot be recovered correctly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.