Abstract

Abstract In this paper, we investigate the problem of constructing postquantum-secure verifiable delay functions (VDFs), particularly based on supersingular isogenies. Isogeny-based VDF constructions have been proposed before, but since verification relies on pairings, they are broken by quantum computers. We propose an entirely different approach using succinct non-interactive arguments (SNARGs), but specifically tailored to the arithmetic structure of the isogeny setting to achieve good asymptotic efficiency. We obtain an isogeny-based VDF construction with postquantum security, quasi-logarithmic verification, and requiring no trusted setup. As a building block, we also construct non-interactive arguments for isogeny walks in the supersingular graph over \(\mathbb F_{p^2}\), which may be of independent interest. KeywordsIsogeny-based cryptographyPostquantum cryptographyVerifiable delay functionsSupersingular elliptic curvesSNARGsVerifiable computation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.