Abstract

Accurate and robust object pose estimation for robotics applications requires verification and refinement steps. In this work, we propose to integrate hypotheses verification with object pose refinement guided by physics simulation. This allows the physical plausibility of individual object pose estimates and the stability of the estimated scene to be considered in a unified optimization. The proposed method is able to adapt to scenes of multiple objects and efficiently focuses on refining the most promising object poses in multi-hypotheses scenarios. We call this integrated approach VeREFINE and evaluate it on three datasets with varying scene complexity. The generality of the approach is shown by using three state-of-the-art pose estimators and three baseline refiners. Results show improvements over all baselines and on all datasets. Furthermore, our approach is applied in real-world grasping experiments and outperforms competing methods in terms of grasp success rate. Code is publicly available at github.com/dornik/verefine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.