Abstract

Studies of the reaction of 5-oxaporphyrin iron complexes (verdohemes) with methoxide ion or hydroxide ion have been undertaken to understand the initial step of ring opening of verdohemes. High-spin [ClFe(III)(OEOP)] undergoes a complex series of reactions upon treatment with hydroxide ion in chloroform, and similar species are also detected in dichloromethane, acetonitrile, and dimethyl sulfoxide. Three distinct paramagnetic intermediates have been identified by (1)H NMR spectroscopy. These reactive species are formed by addition of hydroxide to the macrocycle and to the iron as an axial ligand. Treatment of low-spin [(py)(2)Fe(II)(OEOP)]Cl (OEOP is the monoanion of octaethyl-5-oxaporphyrin) with excess methoxide ion in pyridine solution produces [(py)(n)()Fe(II)(OEBOMe)] (n = 1 or 2) ((OEBOMe), dianion of octaethylmethoxybiliverdin), whose (1)H NMR spectrum undergoes marked alteration upon addition of further amounts of methoxide ion. An identical (1)H NMR spectrum, which is characterized by methylene resonances with both upfield and downfield paramagnetic shifts, is formed upon treatment of [Fe(II)(OEBOMe)](2) with methoxide in pyridine solution and results from the formation of [(MeO)Fe(II)(OEBOMe)](-).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call