Abstract
Verapamil is known to suppress shortening of the atrial effective refractory period (AERP) during relatively short-term atrial pacing, although the effect of a long-term stimulation model is unclear. The effect of verapamil on electrical remodeling was evaluated in a canine rapid atrial stimulation model. The right atrial appendage (RAA) was continuously paced (400 beats/min) for 2 weeks. Four pairs of electrodes were sutured at four atrial sites; the RAA, right atrium close to the inferior vena cava, Bachmann's bundle, and LA. AERP, AERP dispersion (AERPd), conduction time, and inducibility of AF were evaluated during the pacing phase and the recovery phase. The same protocol was performed under the administration of verapamil. In five control dogs, the AERP shortening was inhomogeneous and the shortening of the AERP was most prominent in the LA. AERPd increased during the rapid pacing phase by 5 +/- 2 ms, but recovered quickly in the recovery phase. The max AERPd was 46 +/- 4 ms in the control group and was larger than that in the verapamil group (31 +/- 3 ms, P = 0.001). At the LA site, the shortening of the AERP was decreased by verapamil administration (-19 +/- 3 vs -5 +/- 2 ms, P = 0.04). However, the AF inducibility was not significantly different between the two groups. The effect of verapamil on electrical remodeling was inhomogeneous, depending on the anatomic portion. As a result, AERPd widening during the rapid pacing phase was suppressed by verapamil, while the AF inducibility was unchanged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.