Abstract

We tested the hypothesis of beneficial effects of the calcium-blocker verapamil in a model of ischemia-reperfusion, and investigated its effects against coronary microcirculation and cardiomyocyte apoptosis. Isolated working rat hearts were subjected to 15 min global ischemia and 22-180 min reperfusion in the presence or absence of verapamil (0.25 &mgr;M). We evaluated creatinephosphokinase (CK) in coronary effluent, heart weight changes, microvascular permeability (extravasation of fluoresceine-labeled albumin), ultrastructural alterations, and cardiomyocyte apoptosis (by 1.5% agarose gel electrophoresis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling technique). In this model, 0.25 &mgr;M verapamil significantly reduced myocardial damage, CK release and vascular hyperpermeability, concomitant with a reduction in endothelial and cardiomyocyte lesions; on the contrary, 0.25 &mgr;M verapamil was unable to reduce cardiomyocyte apoptosis. In conclusion, in the absence of perfusing granulocytes, the acute administration of a pharmacologically relevant verapamil concentration reduces ischemia-reperfusion injury and prevents coronary endothelial cell and cardiomyocyte necrotic cell death but it is unable to reduce apoptotic cell death in isolated working rat hearts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.