Abstract

The proliferation of fake news on social media platforms necessitates the development of reliable datasets for effective fake news detection and veracity analysis. In this article, we introduce a veracity dataset of Arabic tweets called “VERA-ARAB”, a pioneering large-scale dataset designed to enhance fake news detection in Arabic tweets. VERA-ARAB is a balanced, multi-domain, and multi-dialectal dataset, containing both fake and true news, meticulously verified by fact-checking experts from Misbar. Comprising approximately 20,000 tweets from 13,000 distinct users and covering 884 different claims, the dataset includes detailed information such as news text, user details, and spatiotemporal data, spanning diverse domains like sports and politics. We leveraged the X API to retrieve and structure the dataset, providing a comprehensive data dictionary to describe the raw data and conducting a thorough statistical descriptive analysis. This analysis reveals insightful patterns and distributions, visualized according to data type and nature. We also evaluated the dataset using multiple machine learning classification models, exploring various social and textual features. Our findings indicate promising results, particularly with textual features, underscoring the dataset’s potential for enhancing fake news detection. Furthermore, we outline future work aimed at expanding VERA-ARAB to establish it as a benchmark for Arabic tweets in fake news detection. We also discuss other potential applications that could leverage the VERA-ARAB dataset, emphasizing its value and versatility for advancing the field of fake news detection in Arabic social media. Potential applications include user veracity assessment, topic modeling, and named entity recognition, demonstrating the dataset's wide-ranging utility for broader research in information quality management on social media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.