Abstract
AbstractThe superrotation of the atmospheres of slowly rotating bodies is a long‐standing problem yet unsolved in atmospheric dynamics. On Venus, the most extreme case known of superrotation, this is accompanied and influenced by a recurrent planetary‐scale cloud structure, known as the Y feature. So far, no model has simultaneously reproduced its shape, temporal evolution, related wind field, nor the relation between its dynamics and the unknown UV‐absorbing aerosol that produces its dark morphology. In this paper we present an analytical model for a Kelvin‐like wave that offers an explanation of these peculiarities. Under Venus cyclostrophic conditions, this wave is equatorially and vertically trapped where zonal winds peak and extends 7 km in altitude, and its vertical wind perturbations are shown to produce upwelling of the UV absorber. The Y‐feature morphology and its 30 day evolution are reproduced as distortions of the wave structure by the Venus winds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.