Abstract

Abstract Venturia canescens (Grav.) (Hymenoptera: Ichneumonidae) is a solitary larval koinobiont endoparasitoid, ovipositing in several larval instars of different pyralid moth species that are pests of stored food products. After oviposition, the host larva continues to feed and grow for at least several days, the precise time doing so depending on the stage attacked. We examined the relationship between host stage and body mass on parasitoid development in late second to fifth instars of two hosts with highly variable growth potential: the wax moth, Galleria mellonella (L) and the flour moth, Anagasta kuehniella (Zeller)(Lepidoptera: Pyralidae). G. mellonella is the largest known host of V. canescens, with healthy larvae occasionally exceeding 400mg at pupation, whereas those of A. kuehniella rarely exceed 40 mg at the same stage. Parasitoid survival was generally higher in early instars of G. mellonella than in later instars. By contrast, percentage adult emergence in A. kuehniella was highest in late fifth instar and lowest in late second instar. A. kuehniella was the more suitable host species, with over 45% adult emergence in all instars, whereas in G. mellonella we found less than 35% adult emergence in all instars. Adult parasitoid size increased and egg‐to‐adult development time decreased in a host size‐ and instar‐specific manner from A. kuehniella. The relationship between host size and stage and these fitness correlates was less clear in G. mellonella. Although both host species were parasitized over a similar range of fresh weights, the suitability weight‐range of A. kuehniella was considerably wider than G. mellonella for the successful development of V. canescens. However, in hosts of similar weight under 5 mg when parasitized, larger wasps emerged from G. mellonella than from A. kuehniella. Parasitoid growth and development is clearly affected by host species, and we argue that patterns of host utilization and resource acquisition by parasitoids have evolved in accordance with host growth potential and the nutritional requirements of the parasitoid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call