Abstract
Perception of fear induced by others in danger elicits complex vicarious fear responses and behavioral outputs. In rodents, observing a conspecific receive aversive stimuli leads to escape and freezing behavior. It remains unclear how these behavioral self-states in response to others in fear are neurophysiologically represented. Here, we assess such representations in the ventromedial prefrontal cortex (vmPFC), an essential site for empathy, in an observational fear (OF) paradigm in male mice. We classify the observer mouse’s stereotypic behaviors during OF using a machine-learning approach. Optogenetic inhibition of the vmPFC specifically disrupts OF-induced escape behavior. In vivo Ca2+ imaging reveals that vmPFC neural populations represent intermingled information of other- and self-states. Distinct subpopulations are activated and suppressed by others’ fear responses, simultaneously representing self-freezing states. This mixed selectivity requires inputs from the anterior cingulate cortex and the basolateral amygdala to regulate OF-induced escape behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.