Abstract
Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the life-threatening ventricular arrhythmias that require treatment in an emergency. Detection of VT and VF at an early stage is crucial for achieving the success of the defibrillation treatment. Hence an automatic system using computer-aided diagnosis tool is helpful in detecting the ventricular arrhythmias in electrocardiogram (ECG) signal. In this paper, a discrete wavelet transform (DWT) was used to denoise and decompose the ECG signals into different consecutive frequency bands to reduce noise. The methodology was tested using ECG data from standard CU ventricular tachyarrhythmia database (CUDB) and MIT-BIH malignant ventricular ectopy database (VFDB) datasets of PhysioNet databases. A set of time-frequency features consists of temporal, spectral, and statistical were extracted and ranked by the correlation attribute evaluation with ranker search method in order to improve the accuracy of detection. The ranked features were classified for VT and VF conditions using support vector machine (SVM) and decision tree (C4.5) classifier. The proposed DWT based features yielded the average sensitivity of 98%, specificity of 99.32%, and accuracy of 99.23% using a decision tree (C4.5) classifier. These results were better than the SVM classifier having an average accuracy of 92.43%. The obtained results prove that using DWT based time-frequency features with decision tree (C4.5) classifier can be one of the best choices for clinicians for precise detection of ventricular arrhythmias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.