Abstract
Swine are recognized animal models of human cardiovascular diseases. However, little is known on the CHF-associated changes in the electrophysiological ventricular parameters of humans and animals. The aim of this study was to analyze changes in the durations of ventricular effective refraction period (VERP), QT and QTc intervals of pigs with chronic tachycardia-induced tachycardiomyopathy (TIC). The study was comprised of 28 adult pigs (8 females and 20 males) of the Polish Large White breed. A one-chamber pacemaker was implanted in each of the 28 pigs. Electrocardiographic, echocardiographic and electrophysiological studies were carried out prior to the pacemaker implantation and at subsequent 4-week intervals. All electrocardiographic, echocardiographic and short electrophysiological study measurements in all swine were done under general anesthesia (propofol) after premedication with midazolam, medetomidine, and ketamine. No significant changes in the duration of QT interval and corrected QT interval (QTc) were observed during consecutive weeks of the experiment. The duration of the QTc interval of female pigs was shown to be significantly longer than that of the males throughout the whole study period. Beginning from the 12th week of rapid ventricular pacing, a significant increase in duration of VERP was observed in both male and female pigs. Males and females did not differ significantly in terms of VERP duration determined throughout the whole study period. Ventricular pacing, stimulation with 2 and 3 premature impulses at progressively shorter coupling intervals and an imposed rhythm of 130 bpm or 150 bpm induced transient ventricular tachycardia in one female pig and four male pigs. One episode of permanent ventricular tachycardia was observed. The number of induced arrhythmias increased proportionally to the severity of heart failure and duration of the experiment. However, relatively aggressive protocols of stimulation were required in order to induce arrhythmia in the studied pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.