Abstract

PurposeThe aim of this proof-of-concept study is to introduce new high-dynamic ECG technique with potential to detect temporal-spatial distribution of ventricular electrical depolarization and to assess the level of ventricular dyssynchrony.Methods5-kHz 12-lead ECG data was collected. The amplitude envelopes of the QRS were computed in an ultra-high frequency band of 500–1000 Hz and were averaged (UHFQRS). UHFQRS V lead maps were compiled, and numerical descriptor identifying ventricular dyssynchrony (UHFDYS) was detected.ResultsAn electrical UHFQRS maps describe the ventricular dyssynchrony distribution in resolution of milliseconds and correlate with strain rate results obtained by speckle tracking echocardiography. The effect of biventricular stimulation is demonstrated by the UHFQRS morphology and by the UHFDYS descriptor in selected examples.ConclusionsUHFQRS offers a new and simple technique for assessing electrical activation patterns in ventricular dyssynchrony with a temporal-spatial resolution that cannot be obtained by processing standard surface ECG. The main clinical potential of UHFQRS lies in the identification of differences in electrical activation among CRT candidates and detection of improvements in electrical synchrony in patients with biventricular pacing.

Highlights

  • Pathological changes in the structure of cardiac ventricles often manifest themselves in electrical activity

  • An electrical UHFQRS maps describe the ventricular dyssynchrony distribution in resolution of milliseconds and correlate with strain rate results obtained by speckle tracking echocardiography

  • The effect of biventricular stimulation is demonstrated by the UHFQRS morphology and by the UHFDYS descriptor in selected examples

Read more

Summary

Introduction

Pathological changes in the structure of cardiac ventricles often manifest themselves in electrical activity. The clinical 12lead ECG-based criteria for left ventricle (LV) dyssynchrony quantification and cardiac resynchronization therapy (CRT) implementation are based primarily on the duration and morphology of the QRS complex [1,2,3]. In 1981, Goldberger et al [10] reported the effect of myocardial infarction on lowvoltage high frequency (HF, 150–250 Hz) potentials in the QRS complex (HFQRS, HF-ECG). Studies dedicated to this topic [10,11,12] have shown that HFQRS potential morphology and amplitude reduction are modified by coronary occlusion or infarct-induced ischemia. The presented methodologies have focused predominantly on heart ischemia (single-lead HFQRS morphology), neglected the temporal-spatial properties (dyssynchrony), and analyzed ECG in a limited frequency range (up to 250 Hz) [12, 13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.