Abstract

Acute cardiac contractile dysfunction is common after cardiopulmonary bypass (CPB). A potential molecular mechanism is enhanced beta-adrenergic receptor kinase (betaARK1) activity, because beta-adrenergic receptor (betaAR) signaling is altered in cardiomyocytes after cardioplegia. Therefore, we examined whether adenovirus-mediated intracoronary delivery of a betaARK1 inhibitor (Adv-betaARKct) could prevent post-CPB dysfunction. Rabbits were randomized to receive 5x10(11) total viral particles of Adv-betaARKct or PBS. After 5 days, hearts were arrested with University of Wisconsin solution, excised, and stored at 4 degrees C for 15 minutes or 4 hours before reperfusion on a Langendorff apparatus. Left ventricular (LV) function measured by end-diastolic pressure response to preload augmentation, contractility (LV dP/dt(max)), and relaxation (LV dP/dt(min)) was assessed by use of increasing doses of isoproterenol and compared with a control group of nonarrested hearts acutely perfused on the Langendorff apparatus. In the PBS-treated hearts, LV function decreased in a temporal manner and was significantly impaired compared with control hearts after 4 hours of cardioplegic arrest. LV function in Adv-betaARKct-treated hearts, however, was significantly enhanced compared with PBS treatment and was similar to control nonarrested hearts even after 4 hours of cardioplegia. Biochemically, several aspects of betaAR signaling were dysfunctional in PBS-treated hearts, whereas they were normalized in betaARKct-overexpressing hearts. Myocardial gene transfer of Adv-betaARKct stabilizes betaAR signaling and prevents LV dysfunction induced by prolonged cardioplegic arrest. Thus, betaARK1 inhibition may represent a novel target in limiting depressed ventricular function after CPB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call