Abstract

Although Hedgehog (HH) signaling plays a critical role in patterning the ventral midbrain, its role in early midbrain specification is not known. We examined the midbrains of sonic hedgehog (Shh) and smoothened (Smo) mutant mice where HH signaling is respectively attenuated and eliminated. We show that some ventral (Evx1+) cell fates are specified in the Shh-/- mouse in a Ptc1- and Gli1-independent manner. HH-independent ventral midbrain induction was further confirmed by the presence of a Pax7-negative ventral midbrain territory in both Shh-/- and Smo-/- mice at and before embryonic day (E) 8.5. Midbrain signaling centers are severely disrupted in the Shh-/- mutant. Interestingly, dorsal markers are up-regulated (Wnt1, Gdf7, Pax7), down-regulated (Lfng), or otherwise altered (Zic1) in the Shh-/- midbrain. Together with the increased cell death seen specifically in Shh-/- dorsal midbrains (E8.5-E9), our results suggest specific regulation of dorsal patterning by SHH, rather than a simple deregulation due to its absence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call