Abstract

Dose delivery (total emitted dose, or TED) from dry powder inhalers (DPIs), pulmonary deposition, and the biological effects depend on drug formulation and device and patient characteristics. The aim of this study was to measure, in vitro, the relationship between parameters of inhalation profiles recorded from patients, the TED and fine particle mass (FPM) of Diskus and Turbuhaler inhalers. Inhalation profiles (IPs) of 25 patients, a representative sample of a wide range of 1500 IPs generated by 10 stable asthmatics, 3 x 16 (mild/moderate/severe) COPD patients and 15 hospitalized patients with an exacerbation asthma or COPD, were selected for each device. These 25 IPs were input IPs for the Electronic Lung (a computerdriven inhalation simulator) to determine particle size distribution from Ventolin Diskus and Inspyril Turbuhaler. The TED and FPM of Diskus and FPM of Turbuhaler were affected by the peak inspiratory flow (PIF) and not by slope of the pressure-time curve, inhaled volume and inhalation time. This flow-dependency was more marked at lower flows (PIF < 40 L/min). Both the TED and FPM of Diskus were significantly higher as compared to those of the Turbuhaler [mean (SD) TED(_diskus) (%label claim) 83.5 (13.9) vs. TED(_turbuhaler) (72.5 (11.1) (p = 0.004), FPM(_diskus) (%label claim) 36.8 (9.8) vs FPM(_turbuhaler) (28.7 (7.7) (p < 0.05)]. The TED and FPM of Diskus and FPM of Turbuhaler were affected by PIF, the flow-dependency being greater at PIF values below 40 L/min. Lower PIFs occurred more often when using Turbuhaler than Diskus, since Turbuhaler have a higher resistivity, requires substantially higher pressure in order to generate the same flow as Diskus. TED, dose consistency and the FPM were higher for Diskus as compared to Turbuhaler. The flow dependency of TED and FPM was substantially influenced by inhalation profiles when not only profiles of the usual outpatient population were included but also the real outliers from exacerbated patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.