Abstract

Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. Physiologic studies have elucidated the impact of low tidal volume ventilation and varying levels of positive end expiratory pressure on intracranial pressure and cerebral perfusion. Epidemiologic studies have reported the association of different thresholds of tidal volume, plateau pressure, driving pressure, mechanical power, and arterial oxygen and carbon dioxide concentrations with mortality and neurologic outcomes in patients with ABI. The data collectively make clear that injurious ventilation in this population is associated with worse outcomes; however, optimal ventilatory targets remain poorly defined. Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call